Part Number Hot Search : 
SC4212B MC110 ER107 BA489 10100 2N1373 B91022 AD536AKQ
Product Description
Full Text Search
 

To Download MRF136 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF136/D
The RF MOSFET Line
RF Power Field-Effect Transistors
MRF136
N-Channel Enhancement-Mode MOSFET
Designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range, in single ended configuration. * Guaranteed 28 Volt, 150 MHz Performance Output Power = 15 Watts Narrowband Gain = 16 dB (Typ) Efficiency = 60% (Typical) * Small-Signal and Large-Signal Characterization * 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR * Excellent Thermal Stability, Ideally Suited For Class A Operation * Facilitates Manual Gain Control, ALC and Modulation Techniques
G S D 15 W, to 400 MHz N-CHANNEL MOS BROADBAND RF POWER FET
CASE 211-07, STYLE 2
MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage (RGS = 1.0 M) Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGR VGS ID PD Tstg TJ Value 65 65 40 2.5 55 0.314 - 65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/C C C
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max 3.2 Unit C/W
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
REV 7
1
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted.)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain-Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) Zero-Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate-Source Leakage Current (VGS = 40 V, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 2.0 1.0 Vdc mAdc Adc
ON CHARACTERISTICS (1)
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) Forward Transconductance (VDS = 10 V, ID = 250 mA) VGS(th) gfs 1.0 250 3.0 400 6.0 -- Vdc mmhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 24 27 5.5 -- -- -- pF pF pF
FUNCTIONAL CHARACTERISTICS
Noise Figure (VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) Common Source Power Gain (Figure 1) (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Drain Efficiency (Figure 1) (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Electrical Ruggedness (Figure 1) (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA, VSWR 30:1 at all Phase Angles) NOTES: 1. Each side measured separately. NF Gps No Degradation in Output Power -- 13 50 1.0 16 60 -- -- -- dB dB %
REV 7
2
R4 + - RFC1
C10
RFC2
C11
VDD = + 28 V
BIAS ADJUST R3 R2
D1
C8
C9
C7
R1 C1 RF INPUT C2 DUT L1
L2
L3
C6 RF OUTPUT
C4
C3
C5
C1, C2 -- Arco 406, 15 - 115 pF or Equivalent C3 -- Arco 404, 8 - 60 pF or Equivalent C4 -- 43 pF Mini-Unelco or Equivalent C5 -- 24 pF Mini-Unelco or Equivalent C6 -- 680 pF, 100 Mils Chip C7 -- 0.01 F Ceramic C8 -- 100 F, 40 V C9 -- 0.1 F Ceramic C10, C11 -- 680 pF Feedthru D1 -- 1N5925A Motorola Zener
L1 -- 2 Turns, 0.29 ID, #18 AWG, 0.10 Long L2 -- 2 Turns, 0.23 ID, #18 AWG, 0.10 Long L3 -- 2-1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long RFC1 -- 20 Turns, 0.30 ID, #20 AWG Enamel Closewound RFC2 -- Ferroxcube VK-200 -- 19/4B R1 -- 27 , 1 W Thin Film R2 -- 10 k, 1/4 W R3 -- 10 Turns, 10 k R4 -- 1.8 k, 1/2 W Board Material -- 0.062 G10, 1 oz. Cu Clad, Double Sided
Figure 1. 150 MHz Test Circuit
REV 7
3
TYPICAL CHARACTERISTICS
20 18 Pout , OUTPUT POWER (WATTS) 16 14 12 10 8 6 4 2 0 0 200 600 800 400 Pin, INPUT POWER (MILLWATTS) 1000 VDD = 28 V IDQ = 25 mA Pout , OUTPUT POWER (WATTS) f = 100 MHz 150 MHz 200 MHz
10 9 8 7 6 5 4 3 2 1 0 0 200 400 600 800 Pin, INPUT POWER (MILLWATTS) 1000 VDD = 13.5 V IDQ = 25 mA 200 MHz 150 MHz f = 100 MHz
Figure 2. Output Power versus Input Power
Figure 3. Output Power versus Input Power
20 18 Pout , OUTPUT POWER (WATTS) 16 14 12 10 8 6 4 2 0 0 1 2 Pin, INPUT POWER (WATTS) 3 4 VDD = 13.5 V f = 400 MHz IDQ = 25 mA Pout , OUTPUT POWER (WATTS) VDD = 28 V
24 21 18 15 400 mW 12 9 6 3 0 12 14 IDQ = 25 mA f = 100 MHz 16 20 24 18 22 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 200 mW Pin = 600 mW
Figure 4. Output Power versus Input Power
Figure 5. Output Power versus Supply Voltage
24 Pin = 900 mW Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 21 18 600 mW 15 12 9 6 3 0 12 14 300 mW
24 21 18 15 0.7 W 12 9 6 3 26 28 0 12 14 0.4 W IDQ = 25 mA f = 200 MHz 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Pin = 1 W
IDQ = 25 mA f = 150 MHz 16 20 24 18 22 VDD, SUPPLY VOLTAGE (VOLTS)
Figure 6. Output Power versus Supply Voltage
Figure 7. Output Power versus Supply Voltage
REV 7
4
TYPICAL CHARACTERISTICS
20 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 18 16 14 12 10 8 6 4 2 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 1W IDQ = 25 mA f = 400 MHz Pin = 3 W 2W
16 14 12 10 8 6 4 2 0 -7 -6 -5 -4 -3 -2 -1 0 1 VGS, GATE-SOURCE VOLTAGE (VOLTS) 2 3 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 400 MHz 150 MHz VDD = 28 V IDQ = 25 mA Pin = CONSTANT
400 MHz
Figure 8. Output Power versus Supply Voltage
Figure 9. Output Power versus Gate Voltage
2 I D, DRAIN CURRENT (MILLAMPS) 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 VDS, GATE-SOURCE VOLTAGE (VOLTS) 6 7 VDS = 10 V TYPICAL DEVICE SHOWN, VGS(th) = 3 V
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 - 25 0
VDS = 28 V
ID = 750 mA 500 mA
250 mA
25 mA
25
75 125 50 100 TC, CASE TEMPERATURE (C)
150
175
Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics)
Figure 11. Gate-Source Voltage versus Case Temperature
100 VGS = 0 V f = 1 MHz Coss
10 5 3 2 1 TC = 25C
180 C, CAPACITANCE (pF)
60
40
Ciss Crss
I D, DRAIN CURRENT (AMPS) 28
20 0
0.3 0.2 0.1
0
4
16 20 24 8 12 VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
1
2
10 3 5 20 30 50 70 VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
100
Figure 12. Capacitance versus Drain-Source Voltage
Figure 13. DC Safe Operating Area
REV 7
5
TYPICAL CHARACTERISTICS
TYPICAL 400 MHz PERFORMANCE
40 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 35 30 25 20 15 10 5 0 0 0.5 1 2.5 1.5 2 Pin, INPUT POWER (WATTS) 3 3.5 VDD = 28 V IDQ = 100 mA f = 400 MHz 40 35 30 25 20 15 10 5 0 -4 -3 -2 0 2 -1 1 VGS, GATE-SOURCE VOLTAGE (VOLTS) 3 4 f = 400 MHz VDD = 28 V IDQ = 100 mA Pin = CONSTANT TYPICAL DEVICE SHOWN, VGS(th) = 3 V
Figure 14. Output Power versus Input Power
Figure 15. Output Power versus Gate Voltage
REV 7
6
400 200 Zin{ 150 200 f = 100 MHz ZOL* 150 VDD = 28 V, IDQ = 25 mA, Pout = 15 W f MHz 100 150 200 400 Zin{ OHMS 7.5 - j9.73 4.11 - j7.56 2.66 - j6.39 2.39 - j2.18 f = 100 MHz 400
VDD = 28 V, IDQ = 25 mA, Pout = 15 W f MHz 100 150 200 400 ZOL* OHMS 13.7 - j16.8 9.08 - j15.38 4.74 - j8.92 4.28 - j4.17
{27 Shunt Resistor Gate-to-Ground
ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
Figure 16. Large-Signal Series Equivalent Input Impedance, Zin
Figure 17. Large-Signal Series Equivalent Output Impedance, ZOL*
400 225
Zin & ZOL* are given from drain-to-drain and gate-to-gate respectively.
400 Zin 150 225 ZOL* 150 100 100 50 f = 30 MHz f MHz 30 50 100 150 225 400
VDD = 28 V, IDQ = 100 mA, Pout = 30 W Zin{ Ohms 59.3 - j24 48 - j33.5 20.5 - j34.2 4.77 - j25.4 3 - j9.5 2.34 - j3.31 ZOL* Ohms 40.1 - j8.52 37 - j11.9 29 - j16.5 20.6 - j19 13 - j16.7 10.2 - j14.3
50
f = 30 MHz
Feedback loops: 560 ohms in series with 0.1 F Drain to gate, each side of push-pull FET ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
Figure 18. Input and Outut Impedance
REV 7
7
f (MHz) 2.0 5.0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800
S11 |S11| 0.988 0.970 0.923 0.837 0.784 0.751 0.733 0.720 0.709 0.707 0.706 0.708 0.711 0.714 0.717 0.720 0.723 0.727 0.732 0.735 0.738 0.740 0.746 0.742 0.744 0.751 0.757 0.760 0.762 0.774 0.775 0.781 0.787 0.792 0.797 0.801 0.810 0.816 0.818 0.825 0.834 0.837 0.836 0.841 0.844 0.846 - 11 - 27 - 52 - 88 - 111 - 125 - 135 - 1 42 - 147 - 152 - 155 - 157 - 159 - 161 - 163 - 164 - 165 - 166 - 167 - 168 - 169 - 170 - 171 - 172 - 173 - 174 - 175 - 176 - 177 - 179 - 179 + 179 + 177 + 176 + 175 + 175 + 174 + 173 + 171 + 170 + 169 + 168 + 167 + 166 + 165 + 163 |S21| 41.19 40.07 35.94 27.23 20.75 16.49 13.41 11.43 9.871 8.663 7.784 7.008 6.435 5.899 5.439 5.068 4.709 4.455 4.200 3.967 3.756 3.545 3.140 2.783 2.540 2.323 2.140 1.963 1.838 1.696 1.590 1.493 1.415 1.332 1.259 1.185 1.145 1.091 1.041 0.994 0.962 0.922 0.879 0.838 0.824 0.785
S21 173 164 149 129 117 108 103 99 96 93 91 88 86 85 82 80 80 78 77 75 74 73 69 67 64 60 58 54 52 50 48 46 43 40 38 37 36 34 32 30 29 27 25 25 24 21 |S12| 0.006 0.014 0.026 0.040 0.046 0.048 0.050 0.050 0.050 0.051 0.051 0.051 0.051 0.051 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.053 0.053 0.054 0.055 0.058 0.059 0.062 0.065 0.068 0.071 0.074 0.079 0.083 0.088 0.094 0.101 0.106 0.112 0.119 0.127 0.133 0.140 0.148 0.154
S12 67 62 54 36 27 22 19 16 14 13 13 13 14 15 16 17 18 18 18 19 19 20 22 25 27 29 32 35 38 41 43 46 47 48 50 51 52 52 53 53 53 53 52 53 52 50 |S22| 0.729 0.720 0.714 0.690 0.684 0.680 0.679 0.678 0.679 0.683 0.682 0.680 0.681 0.682 0.684 0.684 0.686 0.690 0.694 0.699 0.703 0.706 0.717 0.724 0.724 0.736 0.749 0.758 0.768 0.783 0.793 0.805 0.813 0.825 0.831 0.843 0.855 0.869 0.871 0.884 0.890 0.906 0.909 0.917 0.933 0.941
S22 - 12 - 31 - 58 - 96 - 118 - 131 - 139 - 145 - 149 - 153 - 155 - 157 - 158 - 159 - 160 - 161 - 161 - 161 - 162 - 162 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 163 - 164 - 164 - 164 - 164 - 164 - 165 - 165 - 165 - 165 - 166 - 167 - 167 - 167 - 168
Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 0.5 A
REV 7
8
+j50 +120 +j25 +j100 +j150 +j10 f = 800 MHz 0
10 25 50 100 150 250 500
+90 +60 f = 800 MHz +150 S12 600 400 180 - j500
0.18 0.14 0.10 0.06 0.02
+30
+j250 +j500
70
400 150
0.16
0.12
0.08
0.04
0
- j10
70
S11
- j250 -150 - j150 - j100 -120
- 30
- j25 - j50
- 60 -90
Figure 19. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A
Figure 20. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A
+90 +120 70 100 +150 S21 150 400 f = 800 MHz +30 +j10 +60 +j25
+j50 +j100 +j150 +j250 +j500 0 f = 800 MHz 150 400 70 - j10 S22 - j25 - j50 0
10 25 50 100 150 250 500
180
8
6
4
2
- j500 - j250 - j150 - j100
-150
- 30
-120 - 90
- 60
Figure 21. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A
Figure 22. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A
REV 7
9
DESIGN CONSIDERATIONS The MRF136 is an RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for HF and VHF power amplifier applications. M/A-COM RF MOS FETs feature planar design for optimum manufacturability. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF136 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 10). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25 -100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters. The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems. GAIN CONTROL Power output of the MRF136 may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate
voltage. This feature, not available in bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region. AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots. RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor. For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see M/A-COM Application Note AN215A. LOW NOISE OPERATION Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.
REV 7
10
PACKAGE DIMENSIONS
A U M Q
1 4
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
M
DIM A B C D E H J K M Q R S U STYLE 2: PIN 1. 2. 3. 4. SEATING PLANE SOURCE GATE SOURCE DRAIN
R
2 3
B
S
D K
INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730
MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54
J H C E
CASE 211-07 ISSUE N
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 7
11


▲Up To Search▲   

 
Price & Availability of MRF136

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X